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We present an experimental and numerical study of a novel variant of the 
Taylor-Couette problem. The ends of the annular region rotate with the inner cylinder 
producing a strong, symmetric forcing of the flow. One consequence of the imposed 
forcing is that asymmetric flows are more readily found than in the standard 
stationary-ends case. This has led to the discovery of several new and interesting 
bifurcation phenomena, including codimension-two points of a type normally 
associated with chaos in finite-dimensional dynamical systems. 

1. Introduction 
The rich variety of bifurcation phenomena that may be observed in Taylor- 

Couette flow has provided a convenient setting for careful comparison between 
the results of controlled experiments and numerical solutions of the Navier-Stokes 
equations (see for example Cliffe & Mullin 1985 and Cliffe 1989). To date, most of 
the work on the finite-length problem has been concerned with steady bifurcation, 
although the more recent work of Mullin, Cliffe & Pfister (1987) has dealt with the 
origins of time-dependence which arises at multiple bifurcation points in the steady 
solution set. The time-dependent motion thus formed may be either regular or 
irregular and is found to pervade a wide range of parameter space. This type of 
periodic motion differs from the so-called wavy Taylor vortices studied by Davey , 
DiPrima & Stuart (1968), Kreuger, Gross & DiPrima (1966), DiPrima & Grannick 
(1971), Iooss (1986) and others. For the wide-gap case studied here, the instability 
leading to wavy Taylor vortices occurs at much higher Reynolds numbers, as shown 
by the numerical calculations of Jones (1981, 1982, 1985) and the experiments of 
Mullin & Benjamin (1980), Lorenzen & Mullin (1985) and Mullin (1985). 

A prominent feature of the recent investigations is the role played by symmetry- 
breaking bifurcations. The flows arising at such bifurcation points are no longer 
mirror symmetric about the mid-plane of the annulus. The symmetry-breaking 
bifurcation points move around on the symmetric solution surface as the auxiliary 
(geometric) parameters are varied. They can interact with folds in the symmetric 
solution set at double singular points. A pair of paths of Hopf bifurcation points, one 
on each of the two asymmetric surfaces, can sometimes emerge from such a point 
(Langford 1979; Schaeffer & Golubitsky 1981 ; Dangelmayr & Armbruster 1983 and 
Mullin et al. 1987). Multiple bifurcation points in problems having a spatial 
symmetry have been widely studied in recent years. In  particular, the Taylor- 
Couette problem with co-rotating or counter-rotating cylinders and with periodic 
boundary conditions at the ends of prescribed length of the annulus has been 
examined by Golubitsky & Stewart (1986), Chossat, Demay & Iooss (1987), 
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Langford, et al. (1988) and Golubitsky & Langford (1988). Their results, however, are 
not relevant to the present case because the presence of endwalls destroys 
translational invariance in the axial direction. The symmetries which exist in the 
physical problem are reflectional symmetry about the mid-plane of the annulus and 
an azimuthal symmetry, namely the group of rotations about the common axis of the 
cylinders. The effect of symmetry-breaking bifurcations, when the symmetry is of 
reflection type, has been studied in the related problem of Taylor vortices in spherical 
Couette flow by Tuckerman (1983), Schrauf (1986) and Marcus & Tuckerman 
(1987a, 6 ) .  

The present study is an experimental and numerical investigation into the effects 
of boundary conditions on the bifurcation set. Flow in the annular gap between two 
concentric cylinders is driven by the rotation of the inner cylinder and both the top 
and bottom end plates which are rigidly attached to it. Thus the outer wall alone is 
stationary and the cellular motion has strong symmetric forcing from the rotating 
end plates. It will be shown that symmetry-breaking bifurcations are, perhaps 
surprisingly, more readily found in this case than in the more commonly studied case 
of stationary ends. 

The primary flow is defined to be the cellular state that is developed by gradual 
increases in Reynolds number, R,  from small values. In  the present configuration it 
consists of an even number of cells with predominantly outward motion adjacent to 
the rotating ends. The observations by Burkhalter & Koschmeider (1974) using 
sudden starts in an appar: 'us with two rotating ends, and by Cliffe & Mullin (1986) 
in an apparatus with a single rotating end, suggest that the end cells grow a t  the 
expense of the inner cells as R is increased. Thus, for any aspect ratio, we expect that 
the observable steady solution set will be unique at both small and large values of R 
and will consist of just two cells in the parameter ranges studied here. 

In  addition, cells adjacent to the rotating ends are observed always to have a 
direction of rotation such that there is outward motion along the end walls. In  other 
words, anomalous modes as observed by Benjamin & Mullin (1981), which would 
have a t  least one inward-spiralling cell, are not expected, and they have not been 
observed in the present system. Thus the high multiplicity which has previously been 
associated with Taylor-Couette flows is greatly reduced, and further the only cases 
of non-uniqueness of steady flows are confined to a narrow band of R. 

A fmite-element code was used to solve the steady axisymmetric NavierStokes 
equations for the flow in an annular gap, and numerical bifurcation techniques were 
employed to compute loci of singular points in the steady-solution set. We have 
concentrated on the exchange of priority between the two-cell and four-cell primary 
states as the aspect ratio is varied. Limits of stability of the competing flows were 
measured in carefully controlled experiments and compared with their computed 
stability limits. Much of the exchange behaviour was computed to occur over a range 
of lop3 in aspect ratio and 10-1 in Reynolds number, so that it could not be observed 
experimentally. In  addition, some of the most interesting behaviour occurs on 
unstable solution surfaces and is therefore only detectable by computation. 

Further work on the interesting dynamics associated with one of the codimension- 
2 singular points is reported in Mullin, Tavener & Cliffe (1989). There it was found 
that bands of regular and irregular motion could be entered by either increases or 
decreases of R along a branch of steady solutions. 

An outline of the numerical techniques is presented in $2, and the apparatus and 
experimental methods are discussed in $3. The results are presented in $4, where a 
comparison between numerical and experimental results is given. Finally, some 
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conclusions are drawn in $5, where we also outline ongoing research on the dynamics 
of the problem. 

2. Computational techniques 
We consider the steady flow of an incompressible fluid in the annular region 

between two concentric cylinders of radii r: and r: and length 1. A cross-section of 
the fluid-filled region is shown in figure 1. The flow is driven by the inner cylinder and 
top and bottom surfaces, which rotate with angular velocity SZ. The outer cylinder 
alone is stationary. 

In cylindrical polar coordinates the NavierStokes equations for steady axi- 
symmetric incompressible flow are 

In these equations the following non-dimensional quantities have been introduced : 

r* Z* 
r = --/3, 

d z = T 7  

where 

and 

Here the starred symbols represent the respective dimensional variables and p is the 
molecular viscosity. The Reynolds number R and aspect ratio r are defined by 

(2.6) 
I? , r = -  Or: d R=- 

V d '  

Here v is the kinematic viscosity of the fluid. Equations (2.1)-(2.4) hold in the region 

D = { ( r , z ) : O  < r < 1, -0.5 < z < 0.5). (2.7) 
The conditions at the boundary of D are 

(2.8) I ur=uz=O on r = 0 , 1  andon z =  +& 
1 o n r = 0 ,  

P ( r )  on z = k;, 
where F(r)  is as shown in figure 2. The form of F corresponds to a rigid-body rotation 
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R 

0 kr* 

I 

FIQURE 1. Cross-section through flow configuration showing rotating ends and local coordinate 
system. 

1 - 6  

r-+ 

FIQURE 2. Azimuthal velocity boundary condition at z = +i. 

up to a distance E from the outer cylinder. Over the small distance E a quadratic 
variation is used matching the value and slope of the rigid body rotation at  r = 1 - E 
and being zero at r = I .  This assumption corresponds to the interpolation scheme 
used for the azimuthal component of velocity (see below). It is clear that the 
azimuthal velocity in the experiment must behave in a similar way although the 
exact form of F is unknown. Our experience is that, provided E is sufficiently small 
(<0.02), the effect of the form of F on the flow patterns away from the immediate 
vicinity of the corners is negligibly small. 

As a starting point for the discretization, the Navier-Stokes equations are 
converted into a nonlinear operator equation in an appropriate Hilbert space. Each 



Novel bifurcation phenomena in a rotating annulus 487 

FIGURE 3. Grid refinement at the outer corners. 

of the velocity components u,,uo and u, is required to lie in W 2 ( D ) ,  the space of 
functions whose first derivatives are square integrable over the domain D.  The 
pressure p is required to lie in L2(D), the space of functions that are square integrable 
over D.  The Hilbert space H = W092(D)3 xL2(D),  where W0*2(D)3 is the space of 
vector-valued functions which vanish (weakly) on the boundary of D and whose 
components lie in W 2 ( D ) .  

The finite-element method finds an appropriate solution in a finite-dimensional 
subspace of the Hilbert space H.  We define Hh = wh,o xMh,  where spaces wh,o c 
W0.2(D)3 and Mh c L2(D). The parameter h is the length of the longest edge of the 
finite-element mesh. The velocity space wh,o is generated using nine-noded 
isoparametric quadrilateral elements with biquadratic interpolation. &fh is generated 
by piecewise linear interpolation on the same elements. Three pressure degrees of 
freedom, p ,  p ,  and p,, are associated with the central node. The pressure interpolation 
is, in general, discontinuous across element boundaries. The domain D(2.8) was 
discretized using a 50 x 5 element basic grid, with local refinement a t  the two outer 
corners to cope with the rapid variation in the azimuthal velocity as shown in figure 
3. The value of E in (2.8) is chosen equal to the length of that side of the corner 
element which lies on the end plate. Thus the azimuthal velocity profile on the end 
plates differs from rigid body only over the last element. 

The finite-element equations may be written as a set of nonlinear equations for the 
nodal values; i.e. in terms of a function8 R" x R3+ R" we have 

where u is the n-vector of nodal freedoms. 
The experimental configuration has reflectional symmetry about the mid-plane, 

and this property is preserved in the discrete system of nonlinear equations provided 
the mesh is symmetric about the mid-plane. Cliffe & Spence (1986) construct a finite- 
dimensional symmetry operator & E  R" x Rn such that 

Thusf commutes with 8. 
The numerical bifurcation techniques used to compute solution branches and loci 

of singular points have been discussed in detail by a number of authors (e.g. Cliffe & 
Spence 1986). The methods used are therefore only briefly described here. 

The symmetry operator ŝ  partitions R" into a direct sum of symmetric and 
antisymmetric components : thus 

Au;R,T,r)  = 0, (2-9) 

A&; R,  r,q) = &Au;R,r , r ) ,  & + I ,  (8)2 = I .  (2.10) 

Rn = R,. + R;, 
where U E R ;  if 8u = u and U E  RE if 8u = -u. (2.11) 
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For sufficiently small Reynolds numbers, the NavierStokes equations have a 
unique solution in a bounded domain (Serrin 1959), and in a symmetric domain this 
unique solution will be symmetric (Benjamin 1978a) b) .  It can be shown that the null 
eigenvector a t  a simple singular point (u,;R,, r, q), u, E R:, must be either an element 
of R: or else an element of R:. If the null eigenvector #,ER;, the bifurcation is 
symmetry-preserving since the bifurcating solutions remain elements of R:. The 
expected or codimension-one symmetry-preserving singularity is a quadratic turning 
point. If the null eigenvector #,E R:, bifurcating solutions no longer remain elements 
of RW,., and such bifurcations are said to be symmetry-breaking. The codimension-one 
symmetry-breaking singularity is a pitchfork bifurcation which gives rise to a pair of 
asymmetric solutions. We note that asymmetric solutions, which are no longer 
symmetric with respect to  reflection about the mid-plane of the annulus, always 
occur in pairs which have equivalent stability properties and bifurcation points. 

Keller arclength continuation (Keller 1977) was used to compute solution 
branches, and all loci of singular points. This technique preserves the regularity of 
the system of nonlinear equations at simple turning points. 

An extended system developed by Moore & Spence (1980) was used to compute loci 
of quadratic turning points. Non-degenerate hysteresis points (cubic turning points) 
may also be computed as regular solutions of the extended system proposed by 
Spence & Werner ( 1982). Transcritical bifurcation points and isola formation points 
were computed using the technique proposed by Spence & Jepson (1984). These 
points are distinguished by the sign of an expression involving higher-order 
derivatives . 

Werner & Spence (1984) present a method for computing symmetry-breaking 
bifurcation points as regular solutions of a simple extended system. It is important 
to note that in calculating symmetry-breaking singular points the symmetry 
condition can be used to reduce, by approximately half, the number of degrees of 
freedom in the problem (Cliffe & Spence 1986). This is done, essentially, by 
discretizing the lower half of the domain D (i.e. z < 0). Of course, a full grid must be 
used to  compute asymmetric solutions. Coalescence points are turning points in 
paths of symmetry-breaking bifurcation points and may be computed using an 
extended system given by Cliffe & Spence (1984). Two types of coalescence points 
exist, depending upon whether the asymmetric surface lies inside the locus of 
symmetry-breaking bifurcation points (C' type) or outside the locus of bifurcation 
points (C- type). This distinction can be made on the basis of the sign of an 
expression involving higher-order derivatives. At quartic bifurcation points the 
shape of the asymmetric branches is locally quartic rather than quadratic. Quartic 
bifurcation points necessarily occur if a supercritical symmetry-breaking bifurcation 
point becomes subcritical (or vice versa) with continuous change in a parameter. 
Cliffe & Spence (1984) given an extended system for computing quartic bifurcation 
points. At a double singular point (u,; R,, r,, q), ~ , E R ; ,  the derivative (f!) has a 
two-dimensional null space spanned by a symmetric and an antisymmetric 
eigenvector, i.e. @:ER; and &ER:. Double singular points occur at the non- 
transversal intersection of a path of quadratic turning points and a path of 
symmetry-breaking bifurcation points. Werner (1984) gives a method for their 
computation. 

In order to determine the linear stability of a steady asymmetric solution 
( u ;  R,  r, 7) with respect to an axisymmetric time-dependent perturbation of the form 
6 = (y  = cr+iw), the time-derivative terms must be incorporated into the weak 
form of the steady Navier-Stokes equations in (2.9). Discretizing the spatial 
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dependence only gives rise to a set of ordinary differential equations, for the vector 
of nodal freedoms, of the form : 

(2.12) au 
at M - +flu ; R,  r, 7)  = 0 ,  

where M is the mass matrix,flu; R ,  Q) = 0 is the equation (2.9) governing steady 
axisymmetric solutions, and the nodal freedoms u are continuous functions of time. 
The stability of steady, axisymmetric solutions to axisymmetric time-dependent 
disturbances < is determined by solutions of the generalized eigenproblem 

f.6 = yM< (y  = a+iw). (2.13) 
If u > 0 the solution is stable, and if u < 0 the solution is unstable. Linear stability 
analysis fails when the real part of the complex eigenvalue is zero, i.e. when u = 0. 
If w + 0, and au/aR 4 0 then (u,,; R, r, 7) E R" is a Hopf bifurcation point at which 
there will be loss of stability of the steady solution. A branch of periodic solutions 
emerges from the Hopf point and is stable if the direction of branching is such that 
it coexists with the unstable steady solutions. The branch is unstable if it coexists 
with the stable steady solutions. Hopf bifurcation points may be calculated as 
regular solutions of an extended system described by Griewank & Reddien (1983). 
Their scheme also converges to turning points, so that a good initial estimate of the 
Hopf bifurcation point is essential. Cliffe & Mullin (1986) discuss the relation between 
Hopf bifurcation and double singular points in the Taylor problem (see also Langford 
1979 ; Schaeffer &, Golubitsky 1981 ; Dangelmayr & Armbruster 1983 and Mullin et a2. 
1987). 

In order to perform the linear stability analysis with respect to time-dependent 
disturbances that are 2mx-periodic in the azimuthal direction, i.e. < = <e-Yteime, 
where y = a+iw and m a positive integer, the &derivative terms must be 
incorporated into the weak form of the time-dependent Navier-Stokes equations in 
(2.12). Again we discretize the spatial dependence on T and z only, using the finite- 
element method. This leads to a set of partial differential equations in t and 8, where 
the dependent variables are the velocity and pressure degrees of freedom in the r-z 
discretization. The equations may be written in the form 

(2.14) 

where M is the mass matrix, f lu;  R ,  r, 7) = 0 is the equation (2.9) governing steady 
axisymmetric solutions, g(u, ug, u,,, R,  r, 7) contains terms which are non-zero only 
when the flow is not azimuthally symmetric, and the nodal variables u are continuous 
functions of time and of azimuthal coordinate 8. The stability of a steady 
axisymmetric solution u with respect to non-axisymmetric time-dependent dis- 
turbances < is determined by solutions of the generalized eigenproblem 

(fu+imgu,-mm2g~)< = y M <  (y = u+iw). (2.15) 
Singular points on the asymmetric solution surface for which the generalized 
eigenvalue y = u + iw is purely imaginary may be computed using a generalization of 
the Griewank & Reddien technique. 

au 
at M-+f lu;R,r , r )+g(u ,u , ,u , ,R ,r , r ] )  = 09 

3. Experiments 
An experimental rig was constructed with a radius ratio of 0.5 and range of aspect 

ratio from 0.8 to 4.6. The inner cylinder was machined from brass and the outer 
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cylinder was a length of precision-bore glass tube. They were mounted concentrically 
between two milled aluminium plates. Two brass collars, forming top and bottom of 
the test section, were keyed to the inner cylinder so that they rotated with it. The 
top collar was split into two and connected by interference fitting a bearing so that 
the top half remained stationary while the lower portion rotated with the inner 
cylinder. The height of the lower collar was fixed, while the upper one was adjustable. 
Precise control of the angular velocity of the inner cylinder and two ends was 
provided by use of a stepping motor, reduction gear and toothed-belt drive. An 
oscillator was used to control the stepping motor and its frequency was displayed 
digitally on an electronic counter. Both cylinders were mounted inside a watertight 
cabinet through which water at 27.3 "C was circulated by a Haake temperature- 
control unit. The entire construction was placed inside a cabinet in which the 
temperature of the air was controlled to 0.1 "C. By these means the temperature of 
the working fluid was controlled to within f O . O 1  "C. 

Steady flows were studied using flow-visualization techniques. Small quantities of 
a pearly substance (Mearl Corporation Superpearl 100) were added to the fluid. When 
observed at right angles to a slit of light from a slide projector, the cellular structure 
was clearly seen. The cell boundaries appeared as fine dark bands and their heights 
were measured using a travelling telescope. By these means the cellular structure was 
readily determined and its symmetry could also be checked. 

Time-dependent flows were more conveniently detected using laser-Doppler 
velocimetry to measure the radial velocity at  a single point in the flow. This 
technique also afforded an accurate measurement of their period. High-quality 
0.23 f 0.002 mm polystyrene spheres were introduced into the fluid to improve the 
scattering of the laser light. The traces of velocity versus time were further analysed 
by a microprocessor-based correlator, so that the temporal characteristics of the flow 
could be determined. In addition, the LDV system could be split to check on the 
phases of the various oscillations, which observation helped determine the azimuthal 
wavenumber m. 

Two types of silicone oil were used. Steady bifurcations were observed using a 
silicone oil of viscosity 4.52 cS. The frequency and growth rate of the axisymmetric 
periodic flows was very small when this oil was used, so that reliable detection was 
difficult. Thus a more viscous silicone oil of viscosity 20.01 CS was used to observe 
these flows. The viscosities of both oils were measured at  27.3"C by means of an 
Ubbelhijlde suspended level viscometer. 

In order to determine the critical Reynolds number for various phenomena, the 
angular velocity of the inner cylinder and endwalls was changed in steps of less than 
0.5% and the flow allowed to settle between each speed change. The settling time 
required was determined by repeating this process with increasingly long settling 
times until repeatable results were achieved. 

4. Computational and experimental comparison 
Computations performed using the numerical techniques discussed in $2 are 

reported here and compared with experimental results obtained with the apparatus 
and procedures outlined in $3. Both computations and experiments were performed 
at a single radius ratio of 0.5. Aspect ratios studied ranged between 2 and 4. 

A unique symmetric steady flow exists for both 'small' and 'large' Reynolds 
numbers, within an intermediate range there are multiple steady solutions. For 
aspect ratios investigated here, 'small' means R < 80 and 'large' means R > 300. 
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The unique steady axisymmetric flow for large Reynolds numbers has two equally 
sized cells. This property is in marked contrast with the Taylor problem when the 
ends are stationary ; then at large R the multiplicity of steady solutions can be high 
(Benjamin & Mullin 1982). 

Figure 4 is a sketch of the loci of singular points on the (R, 0-plane. The scale of 
the exchange region in the numerical results is not a convenient one, and we have 
therefore sketched the singular-point diagram and the accompanying sequence of 
bifurcation diagrams to highlight the salient features. The actual results numerically 
determined are present in figure 5, where they are compared with those obtained in 
the experiment. 

In figure 4 (a), the solid curve JTHDIL is a locus of quadratic turning points of the 
symmetric solution surface. There are four codimension-twot singular points along 
this locus : a transcritical bifurcation point T, a non-degenerate hysteresis point H, 
a double singular point D, and an isola formation point I. The hysteresis point H and 
the transcritical bifurcation point T are separated by just 0.15 in Reynolds number 
and by 5 x in aspect ratio. With increasing aspect ratio a closed loop of 
symmetric four-cell solutions develops from the isola formation point I. The curve 
JTHDIL can be compared with that for the two-cell to four-cell exchange in the case 
of stationary ends (Cliffe 1989). In that case there is no isola-formation point and the 
curve marking the stability of the four-cell secondary flow does not bend round as the 
aspect ratio is decreased. The hysteresis and transcritical bifurcation points occur at 
broadly similar values of Reynolds number and aspect ratio, although the hysteresis 
point occurs at lower values than the transcritical point so that the cusp points down 
in that case. The major difference, however, is that in the standard case, with 
stationary ends, the symmetry-breaking bifurcations and the various time- 
dependent flows do not occur. We note that symmetry-breaking and some time- 
dependent phenomena occur in the 4-cell to 6-cell exchange in the case of stationary 
ends (Cliffe 1989; Mullin et al. 1987). 

The dashed line GQDCK in figure 4(a) is a locus of symmetry-breaking bifurcation 
points (i.e. the reflectional symmetry about the mid-plane of the annulus is broken 
at  this bifurcation point). There are three codimension-two singular points along this 
locus: a C+ type coalescence point C, a double singular point D and a quartic 
bifurcation point Q. A supercritical and subcritical pair of symmetry-breaking 
bifurcation points, connected by a pair of asymmetric solutions, develops with 
increasing aspect ratio from the C+-type coalescence point. 

The supercritical symmetry-breaking bifurcation becomes subcritical for r > r,. 
The chained line EQ thus represents two coincident paths of folds, one on each of the 
two asymmetric surfaces, which are the lower limits of stability of the branches 
emerging from the subcritical bifurcation points which lie along QG. The path of 
symmetry-breaking bifurcations crosses from one symmetric solution surface to the 
other by rounding the fold in the symmetric surface at  the double singular point D. 

Kote that we define the codimension of a bifurcation to be the smallest number of parameters 
necessary for the bifurcation to appear in a stable or persistent way. This is the standard definition 
in the literature on dynamical systems (see e.g. Guckenheimer & Holmes 1983, p. 123). The 
definition of codimension that is used more commonly in the literature on bifurcation theory, (see 
e.g. Golubitsky & Schaeffer 1985, p. 121) depends on the notion of a distinguished parameter. Here 
the codimension is the minimum number of parameters required to produce a versa1 unfolding of 
the bifurcation. An obvious choice for such a distinguished parameter in the problem studied here 
is the Reynolds number. We have chosen to adopt the former convention as much of our effort has 
been focused on the dynamical behaviour near the codimension-two points U and V in figure 5 - see 
Mullin et aE. (1989). 
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FIGURE 4(a) Sketch of the computed loci of singular points for symmetry-preserving and 
symmetry-breaking, steady bifurcation and for bifurcation to periodic flows. JTHDIL is a path of 
quadratic turning points, where T is a transcritical bifurcation point, H is a non-degenerate 
hysteresis or cubic turning point, D is a double singular point and I is an isola formation point. 
GQDCK is a path of symmetry-breaking bifurcation points, where Q is a quartic bifurcation point 
and C is a C' type coalescence point. EQ represents two paths of quadratic turning points, one on 
each of the two asymmetric surfaces. DAU represents two paths of axisymmetric (m = 0) Hopf 
bifurcation points, one on each of the two asymmetric surfaces. OVARP represents two paths of 
non-axisymmetric (m = 1) Hopf bifurcation points, one on each of the two asymmetric surfaces. 
( b )  Labelling of the singular points of the bifurcation diagrams is consistent with the sketch of the 
loci of these points in parameter space. Solid branches in the bifurcation diagrams represent 
symmetric solutions and dashed branches represent asymmetric solutions. Asterisks on the 
asymmetric branches are (m = 0) Hopf bifurcation points. 
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The locus of symmetry-breaking bifurcations is tangent to  the locus of the fold at this 
point and the null space of the Jacobian fu is two-dimensional, spanned by a 
symmetric and an antisymmetric eigenvector. The long-dashed line DAU represents 
two paths of axisymmetric (m = 0) Hopf bifurcation points, one on each of the two 
asymmetric surfaces. These two paths are coincident a t  the double singular point D; 
and the angular frequency, given by the magnitude of the pair of purely imaginary 
eigenvalues, goes to zero at D. The asymmetric solution surfaces become unstable 
with respect to axisymmetric periodic flows upon crossing the locus of m = 0 Hopf 
bifurcation points with increasing Reynolds number. The measured frequency of the 
associated periodic orbits was found to lie between 0.019 (near D) and 0.151 (close to 
A). The two paths of Hopf bifurcation points, which originate at D, terminate in a 
pair of Takens-Bogdanov points marked U in figure 4 (a). 

The dot-dash line OVARP represents two paths of m = 1 Hopf bifurcation points, 
one on each of the two asymmetric surfaces. The two asymmetric surfaces become 
unstable with respect to a three-dimensional tilt wave, with azimuthal wavenumber 
m = 1, upon crossing VR with increasing Reynolds number. The asymmetric 
surfaces restabilize with respect to this flow upon crossing RP. Thus, periodic flows 
with azimuthal wavenumber m = 1 exist over a finite range of Reynolds numbers 
only. There is in effect an isola of m = 1 wavy periodic solutions. The frequency of 
these periodic flows was about 0.239 and was essentially independent of R and r. 
Periodic flows with azimuthal wavenumbers of two or more have not been observed 
either computationally or experimentally. 

The sequence of qualitatively different bifurcation diagrams is sketched below the 
plot of paths of singular points in figure 4 (b ) .  Bifurcation diagrams are constructed 
by plotting a linear functional L,(u) of the symmetric component of the solution in 
one direction (in the plane of the paper), and a linear functional L,(u) of the 
antisymmetric part of the solution in an orthogonal direction (out of the plane of the 
paper) against the Reynolds number. The singular points of the bifurcation diagrams 
are annotated in a way that is consistent with the singular-point diagram. Branch 
stabilities are determined by evaluating the sign of the symmetric and antisymmetric 
Jacobian determinants and these are indicated for each branch. The asterisks denote 
axisymmetric (m = 0) Hopf bifurcation points. Index arguments show that the real 
part of two complex eigenvalues must change sign simultaneously along the 
asymmetric branches when r > r,. This occurs generically at a Hopf bifurcation 
point where a complex-conjugate pair of eigenvalues cross the imaginary axis. Non- 
axisymmetric (m = 1) Hopf bifurcation points are not shown in order to simplify the 
presentation. 

For r < r,, the only solution of equation (2.12) is a symmetric two-cell flow with 
outwardly spiralling flow along the top and bottom surfaces. When the aspect ratio 
is increased into the range r, < r < r,, an isola of symmetric four-cell flows exists, 
developing from the isola formation point I. The isola of four-cell solutions touches 
the primary two-cell branch at the transcritical bifurcation point T when r = r,. 
The transcritical bifurcation disconnects in the opposite sense for r > I',, and the 
symmetric two-cell and four-cell solutions constitute part of a single folded branch 
containing two hysteretic regions. The smaller of these two regions collapses a t  the 
non-degenerate hysteresis point H, but the larger hysteresis persists for r > r,. 
Symmetric two-cell and four-cell solutions then lie on a single folded branch. Along 
this branch the two end-cells grow smoothly and the two middle cells shrink as R is 
increased, until at sufficiently high values of R the flow has only two cells. This is a 
smooth process which does not involve any bifurcations. 
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FIGURE 5. Comparison between computed and experimentally determined limits of stability : (a )  c] 
experimentally observed symmetry-breaking bifurcation ; x , non-reversible loss of stability of the 
asymmetric four-cell flow; (b)  A, Hopf bifurcation to the axisymmetric (m = 0) periodic flow; and 
0,  Hopf bifurcation to the non-axisymmetric (m = 1)  periodic flow. 

I 

3.2 

In figure 5, experimentally determined stability limits are plotted on the (R, I-)- 
plane and compared with the computed loci of codimension-one singularities. Much 
of the steady bifurcation behaviour is experimentally unobservable. In particular, 
symmetric and asymmetric four-cell flows are unstable for r < r,. The isola- 
formation and coalescence points I and C and the entire loci DIL and DCK lie on 
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unstable surfaces and so cannot be detected in experiments. However, we include the 
loci of the unstable branches since they are essential for a full appreciation of the 
events observed in the experiment. 

The points marked by the squares denote experimentally determined symmetry- 
breaking bifurcation points, where a marked departure from the symmetric four-cell 
flow was observed with increasing Reynolds number. The asymmetric flows 
contained pairs of cells with unequal sizes. The flow with longer cells at the top was 
generally found more often since presumably small imperfections in the apparatus 
disconnected the bifurcation in this sense. However, flows with longer cells at the 
bottom could also be seen, especially if R was varied rapidly in the critical region. 
Thus the asymmetric flows were due to the presence of a symmetry-breaking 
bifurcation and were not artifacts of a poorly constructed apparatus. 

For r, < r < r, the onset of asymmetry was smooth and reversible, but for 
r, < r< r, the onset was sudden and exhibited hysteresis. For r > r,, the 
symmetric four-cell flow lost stability suddenly to a periodic flow with m = 1. The 
points marked by crosses show where a catastrophic collapse from the asymmetric 
solution surface to the symmetric solution surface was observed with decreasing 
Reynolds number. The points marked by triangles are the experimentally observed 
m = 0 Hopf bifurcation points for the onset of axisymmetric time-dependent flows. 
Finally, the points marked by circles are the experimentally determined limits of the 
m = 1 isola. Within this region the asymmetric flows were found to become unstable 
to a three-dimensional tilt wave with wavenumber 1. Far inside this region another 
more complicated time-dependent motion was also found, as reported in Mullin et al. 
(1989). Agreement between computational and experimental stability limits was 
achieved to within 2% in all cases. 

5. Conclusions 
We have presented a study of bifurcation phenomenon in a variant of the 

Taylor-Couette experiment in which the ends of the annulus rotate with the inner 
cylinder, the outer being stationary. This configuration produces a driving effect on 
the end cells which increases with Reynolds number. The result is that all flows, other 
than the two-cell, tend to lose stability as the Reynolds number increases, essentially 
because the end cells grow and squeeze out the interior ones. This leads to interesting 
bifurcation behaviour which is different from that observed in the Taylor experiment 
with stationary ends. 

It is also noteworthy that the strong symmetric driving effect seems to produce 
asymmetric flows more preferentially than in the case of stationary ends. Symmetry- 
breaking does play an important role in the case of stationary ends and has a 
profound effect on the dynamics of the flow (Cliffe & Mullin 1986; Mullin et al. 1987); 
however, it  seems to be even more important in the present case. 

The study has also revealed a number of codimension-two points with associated 
interesting dynamical behaviour. While it is possible to write down normal forms 
which describe the behaviour near the points U and V, the calculation of the required 
coefficients is a substantial numerical problem in its own right. However, recent 
extensive experimental studies over these points have uncovered a rich variety of 
dynamical phenomena which are more complex than can be accounted for by the 
simple normal forms. It may be that an interaction between U and V (produced by 
changing the radius ratio) is sufficiently complex to describe the observed 
phenomena. Some preliminary experimental results on the dynamics near point V in 
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figures 4 and 5 have been reported by Mullin et al. (1989) and Mullin & Price (1989). 
However, in order to understand the complicated finite-dimensional dynamics of 
these studies, a full appreciation of the bifurcation structure reflected here is 
essential. 

Finally we re-emphasize the good agreement between the observations and the 
results of the numerical-bifurcation techniques applied to the finite-element 
discretization of the Navier-Stokes equations. 
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